
Security Assessment for

4everland

November 01, 2024

Executive Summary

Overview

Project Name 4everland

Codebase URL https://github.com/4everland/land/tree/
v3

Scan Engine Security Analyzer

Scan Time 2024/11/01 08�00�00

Commit Id e900538ce91c39173cff68e2aa5a57715
a62fde1

Total

Critical Issues 0

High risk Issues 1

Medium risk Issues 2

Low risk Issues 1

Informational
Issues 2

Critical Issues

The issue can cause large
economic losses, large-scale data
disorder, loss of control of authority
management, failure of key
functions, or indirectly affect the
correct operation of other smart
contracts interacting with it.

High Risk Issues

The issue puts a large number of
users' sensitive information at risk or
is reasonably likely to lead to
catastrophic impacts on clients'
reputations or serious financial
implications for clients and users.

Medium Risk
Issues

The issue puts a subset of users'
sensitive information at risk, would
be detrimental to the client's
reputation if exploited, or is
reasonably likely to lead to
moderate financial impact.

Low Risk Issues

The risk is relatively small and could
not be exploited on a recurring
basis, or is a risk that the client has
indicated is low-impact in view of
the client's business circumstances.

Informational Issue
The issue does not pose an
immediate risk but is relevant to
security best practices or Defence
in Depth.

Critical Issues 0% 0

High risk Issues 17% 1

Medium risk Issues 33% 2

Low risk Issues 17% 1

Informational Issues 33% 2

Summary of Findings

MetaScan security assessment was performed on November 01, 2024 08�00�00 on project
4everland with the repository on branch default branch. The assessment was carried out by scanning
the project's codebase using the scan engine Security Analyzer. There are in total 6 vulnerabilities /
security risks discovered during the scanning session, among which 1 high risk vulnerabilities, 2
medium risk vulnerabilities, 1 low risk vulnerabilities, 2 informational issues.

ID Description Severity Alleviation

MSA�001 Missing Invoking The configureClaimableGas For The Blast Contract High risk Fixed

MSA�002 Centralization Risk Medium risk Acknowledged

MSA�003 Different Coins Have The Same Weight When Calculating The
landAmount

Medium risk Mitigated

MSA�004 The getPriceUnsafe() Returned Price Update May be Arbitrarily Far
in The Past.

Low risk Acknowledged

MSA�005 Unused event Informational Acknowledged

MSA�006 Missing Zero Address Check Informational Acknowledged

Findings

High risk �1�

1.
Missing Invoking The configureClaimableGas For The Blast
Contract

High risk Security Analyzer

The claimAllGas() function tries to let the owner to claim gas. But, the configureClaimableGas() function that sets the Gas Mode for
the contract to claimable does not be executed.

The BLAST.configureClaimableGas() should be invoked first to claim the gas.

Document: https://docs.blast.io/building/guides/gas-fees

File(s) Affected

contracts/oracleland/BlastOracleLand.sol #46�48

Recommendation

Invoking the BLAST.configureClaimableGas() function in the constructor.

Alleviation Fixed

The team fixed this finding, in the commit c8b5b586a30b79e5084b942ff6defd10fb381c1a.

Medium risk �2�

1. Centralization Risk Medium risk Security Analyzer

In the Land contract, the owner has the privilege of the following functions:

withdraw: Allows the owner to withdraw tokens from the contract.

In the Land contract, the guardian has the privilege of the following functions:

addCoin: Allows the owner to add a new coin to the contract.

removeCoin: Allows the owner to remove a coin from the contract.

In the LandCore contract, the owner has the privilege of the following functions:

setGuardian: Set the guardian address for the contract;
transferOwnership: Transfer ownership of the contract to a new address.

In the BlastOracleLand contract, the owner has the privilege of the following functions:

claimAllETHYield: Claim all ETH yield from the Blast protocol;

claimAllUSDBYield: Claim all USDB yield from the Blast protocol;

claimAllGas: Claim all gas from the Blast protocol.

In the OracleLand contract, the owner has the privilege of the following functions:

setPriceFeed: Sets the price feed contract to fetch prices from.

 function claimAllGas(address to) external onlyOwner {

 blast.claimAllGas(address(this), to);

 }

46

47

48

https://docs.blast.io/building/guides/gas-fees
http://blob/master/contracts/oracleland/BlastOracleLand.sol

In the ChainlinkPriceFeed contract, the owner has the privilege of the following functions:

setOracle: Allows the owner to set the oracle for a token along with heartbeat value.

In the FixedPriceFeed contract, the owner has the privilege of the following functions:

setPrice: Set the price for a specific token;

fetchPrice: Fetch the price of a specific token.

In the PythPriceFeed contract, the owner has the privilege of the following functions:

setOracle: Allows the owner to set the oracle for a token with a specific Pyth contract, feed, and heartbeat value.

File(s) Affected

contracts/core/Land.sol #9�9

contracts/core/LandCore.sol #7�7

contracts/oracleland/BlastOracleLand.sol #8�8

contracts/oracleland/OracleLand.sol #9�9

contracts/pricefeeds/ChainlinkPriceFeed.sol #11�11

contracts/pricefeeds/FixedPriceFeed.sol #11�11

contracts/pricefeeds/PythPriceFeed.sol #10�10

Recommendation

Consider implementing a decentralized governance mechanism or a multi-signature scheme that requires consensus among multiple
parties before pausing or unpausing the contract. This can help mitigate the centralization risk associated with a single owner
controlling critical contract functions. Alternatively, you can provide a clear justification for the centralization aspect and ensure that
users are aware of the potential risks associated with a single point of control.

Alleviation Acknowledged

The team acknowledged this finding.

2.
Different Coins Have The Same Weight When Calculating The
landAmount

Medium risk Security Analyzer

The mint function allows users to accumulating the land amount by costing kinds of coins. The point is that, the calculating of
landAmount do not take the coin price into account:

 function mint(ICoin coin, bytes32 account, uint256 amount) external whenNotPaused {

 ...

 uint256 coinAmount = formatValue(coin, amount);

contract Land is ILand, LandOwnableUpgradeable {9

contract LandCore is ILandCore {7

contract BlastOracleLand is OracleLand {8

contract OracleLand is Land {9

contract ChainlinkPriceFeed is LandOwnable {11

contract FixedPriceFeed is LandOwnable {11

contract PythPriceFeed is LandOwnable {10

http://blob/master/contracts/core/Land.sol
http://blob/master/contracts/core/LandCore.sol
http://blob/master/contracts/oracleland/BlastOracleLand.sol
http://blob/master/contracts/oracleland/OracleLand.sol
http://blob/master/contracts/pricefeeds/ChainlinkPriceFeed.sol
http://blob/master/contracts/pricefeeds/FixedPriceFeed.sol
http://blob/master/contracts/pricefeeds/PythPriceFeed.sol

 uint256 landAmount = coinAmount * landPerCoin;

 balances[account] += landAmount;

It implies that all the coins have the same weight/price.

File(s) Affected

contracts/core/Land.sol #23�30

Recommendation

Checking if it is an intended design.

Alleviation Mitigated

The team replied that they use different smart contracts to deal with stable coins and the native token, the contract core/Land.sol
deals with the stable coin, and the contract oracleland/OracleLand deals with the native token.

Low risk �1�

1.
The getPriceUnsafe() Returned Price Update May be
Arbitrarily Far in The Past.

Low risk Security Analyzer

The getPriceUnsafe function is unsafe as the returned price update may be arbitrarily far in the past.

interface IPyth is IPythEvents {

 /// @notice Returns the price of a price feed without any sanity checks.

 /// @dev This function returns the most recent price update in this contract without any recency checks.

 /// This function is unsafe as the returned price update may be arbitrarily far in the past.

 ///

 /// Users of this function should check the `publishTime` in the price to ensure that the returned price is

 /// sufficiently recent for their application. If you are considering using this function, it may be

 /// safer / easier to use `getPriceNoOlderThan`.

 /// @return price - please read the documentation of PythStructs.Price to understand how to use this safely.

 function getPriceUnsafe(

 bytes32 id

) external view returns (PythStructs.Price memory price);

Reference: https://github.com/pyth-network/pyth-
crosschain/blob/b0aa4b10317b609f72bb5757f6e770cee243f585/target_chains/ethereum/sdk/solidity/IPyth.sol#L10�L21

File(s) Affected

 function mint(ICoin coin, bytes32 account, uint256 amount) external whenNotPaused {

 require(coinExists(coin), "Land: nonexistent coin");

 (bool success1,) = address(coin).call(abi.encodeWithSignature("transferFrom(address,address,uint

 require(success1, "Land: transfer from failed");

 uint256 coinAmount = formatValue(coin, amount);

 uint256 landAmount = coinAmount * landPerCoin;

 balances[account] += landAmount;

 deposits[account][coin] += amount;

23

24

25

26

27

28

29

30

http://blob/master/contracts/core/Land.sol
https://github.com/pyth-network/pyth-crosschain/blob/b0aa4b10317b609f72bb5757f6e770cee243f585/target_chains/ethereum/sdk/solidity/IPyth.sol#L10-L21

contracts/pricefeeds/PythPriceFeed.sol #136�146

Recommendation

Consider accessing real-time asset data using Pyth Price Feeds.

// Update the prices to the latest available values and pay the required fee for it. The `priceUpdateData` data

// should be retrieved from our off-chain Price Service API using the `pyth-evm-js` package.

// See section "How Pyth Works on EVM Chains" below for more information.

uint fee = pyth.getUpdateFee(priceUpdateData);

 pyth.updatePriceFeeds{ value: fee }(priceUpdateData);

Reference: https://docs.base.org/tutorials/oracles-pyth-price-feeds/

Alleviation Acknowledged

The team acknowledged this finding.

Informational �2�

1. Unused event Informational Security Analyzer

The presence of event that is declared but never used in the codebase. It may increase computation costs and lead to unnecessary
gas consumption.

File(s) Affected

contracts/pricefeeds/PythPriceFeed.sol #44�44

Recommendation

Remove unused event or emit them in the right place to avoid negative effects and improve code readability if there is no plan for
further usage.

Alleviation Acknowledged

The team acknowledged this finding.

2. Missing Zero Address Check Informational Security Analyzer

Contracts, like LandCore, missing zero address check for key state variables. Example:

 //LandCore.sol

 constructor(address _owner, address _guardian) {

 function _fetchCurrentFeedResponse(IPyth _priceAggregator, bytes32 _feed) internal view returns (Fee

 try _priceAggregator.getPriceUnsafe(_feed) returns (IPyth.Price memory price) {

 response.price = price.price;

 response.conf = price.conf;

 response.expo = price.expo;

 response.publishTime = price.publishTime;

 response.success = true;

 } catch {

 return response;

 }

 }

136

137

138

139

140

141

142

143

144

145

146

 event PriceFeedStatusUpdated(address token, address oracle, bool isWorking);44

http://blob/master/contracts/pricefeeds/PythPriceFeed.sol
https://docs.base.org/tutorials/oracles-pyth-price-feeds/
http://blob/master/contracts/pricefeeds/PythPriceFeed.sol

 owner = _owner;

 guardian = _guardian;

 emit GuardianSet(_guardian);

 }

Key addresses assignment are recommended to adding the zero address check to prevent potential risk.

File(s) Affected

contracts/core/LandCore.sol #14�18

Recommendation

Adding zero address check on all the contracts for the key state variables.

Alleviation Acknowledged

The team acknowledged this finding.

 constructor(address _owner, address _guardian) {

 owner = _owner;

 guardian = _guardian;

 emit GuardianSet(_guardian);

 }

14

15

16

17

18

http://blob/master/contracts/core/LandCore.sol

Audit Scope

File SHA256 File Path

OracleLand.sol c8fe9605a702fda60bccbebb2be36e2457772123ded9
f33f17a12b7c336f214d /contracts/oracleland/OracleLand.sol

BlastOracleLand.sol a8eabfee2dd354cf046b3b1e63507c8a804a17caaae72
24ab9cf9bd97a0bb9c9 /contracts/oracleland/BlastOracleLand.sol

Land.sol 6e0cfe546eb3eb219f8d22cf3d65bd7cad39ef48d9e33
6cff54c1b4ce6aa34d0 /contracts/core/Land.sol

LandCore.sol b5fdac233ad7bcfb49ee877c42497cce99029a0c2fe7
b000a0c12f778149637c /contracts/core/LandCore.sol

PythPriceFeed.sol 12338fc4b2d5902d5852e9d687eda061c70ae51b6fcd9
4de2f2389232d0dd431 /contracts/pricefeeds/PythPriceFeed.sol

FixedPriceFeed.sol 83d37f05a69b71f5b7053a1be3d7d9777bf3edd3ec740
3ab8598bf506356b0e0 /contracts/pricefeeds/FixedPriceFeed.sol

ChainlinkPriceFeed.sol a393269c2dcd2a20bef85a1bc73e505c96a0a11dcdd21
fce11f22d6ce23ff5a2 /contracts/pricefeeds/ChainlinkPriceFeed.sol

LandOwnable.sol 25c6fa48ea599b8c984a56c2ba1f1f5aa621a43fe583d
778acb7162b1e4f2cba /contracts/dependencies/LandOwnable.sol

console.sol c9fa628da7d3b789a019a071b0e32e477e320daf80466
aefea390f7c16dfad81 /contracts/dependencies/console.sol

LandOwnableUpgradeabl
e.sol

2e7c729ca175f1bb7e312f7dc95c2214a5ed871dd6dbf3
2eb3a3e4e235c4e507

/contracts/dependencies/LandOwnableUpgradeable.s
ol

Disclaimer

This report is governed by the stipulations (including but not limited to service descriptions, confidentiality,
disclaimers, and liability limitations) outlined in the Services Agreement, or as detailed in the scope of
services and terms provided to you, the Customer or Company, within the context of the Agreement. The
Company is permitted to use this report only as allowed under the terms of the Agreement. Without explicit
written permission from MetaTrust, this report must not be shared, disclosed, referenced, or depended upon
by any third parties, nor should copies be distributed to anyone other than the Company.

It is important to clarify that this report neither endorses nor disapproves any specific project or team. It
should not be viewed as a reflection of the economic value or potential of any product or asset developed
by teams or projects engaging MetaTrust for security evaluations. This report does not guarantee that the
technology assessed is completely free of bugs, nor does it comment on the business practices, models, or
legal compliance of the technology's creators.

This report is not intended to serve as investment advice or a tool for investment decisions related to any
project. It represents a thorough assessment process aimed at enhancing code quality and mitigating risks
inherent in cryptographic tokens and blockchain technology. Blockchain and cryptographic assets inherently
carry ongoing risks. MetaTrust's role is to support companies and individuals in their security diligence and to
reduce risks associated with the use of emerging and evolving technologies. However, MetaTrust does not
guarantee the security or functionality of the technologies it evaluates.

MetaTrust's assessment services are contingent on various dependencies and are continuously evolving.
Accessing or using these services, including reports and materials, is at your own risk, on an as-is and as-
available basis. Cryptographic tokens are novel technologies with inherent technical risks and uncertainties.
The assessment reports may contain inaccuracies, such as false positives or negatives, and unpredictable
outcomes. The services may rely on multiple third-party layers.

All services, labels, assessment reports, work products, and other materials, or any results from their use, are
provided "as is" and "as available," with all faults and defects, without any warranty. MetaTrust expressly
disclaims all warranties, whether express, implied, statutory, or otherwise, including but not limited to
warranties of merchantability, fitness for a particular purpose, title, non-infringement, and any warranties
arising from course of dealing, usage, or trade practice. MetaTrust does not guarantee that the services,
reports, or materials will meet specific requirements, be error-free, or be compatible with other software,
systems, or services.

Neither MetaTrust nor its agents make any representations or warranties regarding the accuracy, reliability,
or currency of any content provided through the services. MetaTrust is not liable for any content
inaccuracies, personal injuries, property damages, or any loss resulting from the use of the services, reports,
or materials.

Third-party materials are provided "as is," and any warranty concerning them is strictly between the
Customer and the third-party owner or distributor. The services, reports, and materials are intended solely
for the Customer and should not be relied upon by others or shared without MetaTrust's consent. No third
party or representative thereof shall have any rights or claims against MetaTrust regarding these services,
reports, or materials.

The provisions and warranties of MetaTrust in this agreement are exclusively for the Customer's benefit. No
third party has any rights or claims against MetaTrust regarding these provisions or warranties. For clarity,
the services, including any assessment reports or materials, should not be used as financial, tax, legal,
regulatory, or other forms of advice.

